Get fully solved assignment, plz drop a mail with your sub code
computeroperator4@gmail.com
Charges for mba rs 125/subject and rs 700/semester only.
For other rs 125/subject only
if urgent then call us
on 08791490301, 08273413412
PROGRAM BSc it
SEMESTER 1
SUBJECT CODE &NAME- BT0063- MATHEMATICS FOR IT
Q1.
: Differentiate x sin x w.r .t.x Solution: Put y = x sin
x
|
|||||||||||
log y = log(x sin x )= sinx log x
|
(Q log AB
|
= B log A)
|
|||||||||
|
d
|
(log y ) =
|
|
|
d
|
(sin x log x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q2: Prove that the set Z4 = {0, 1, 2, 3} is
an abelian group w.r.t. addition modulo 4.
Solution: Form
the composition table w.r.t. addition modulo 4 as below:
Since 1 + 3 = 4 º 0 (mod 4), 3 + 3 = 6 º 2 (mod 4) 2 + 3 = 5 º 1 (mod 4) etc.
1. Closure law.
Q3.
|
1.2.3
|
|
+
|
2.4.5
|
|
+
|
3.6.7
|
+ .........
|
||||||
|
|
|
|
|||||||||||
|
2
!
|
|
|
|
|
3
!
|
|
|
|
4 !
|
|
|
||
Solution:
The given series
can be written as,
|
||||||||||||||
¥
|
n(2n) (2n +1)
|
¥
|
|
4n3 +
2n2
|
||||||||||
S = å
|
|
|
|
|
|
|
= å
|
|
|
|
|
|||
(n +1)!
|
|
|
|
|
(n +1)!
|
|||||||||
n=1
|
|
|
|
n=1
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|||||
Consider 4n3 + 2n2 = a +
b(n +1)+ c(n +1)n + d(n
+1) n(n -1)
=
a
+ bn +
b + cn2 +
cn + dn3 -
dn
=
dn3 +
cn2 +
(b + c -
d )n + (a +
b)
\
d
= 4, c = 2, b + c -
d = 0 Þ
b + 2 -
4 = 0 Þ
b = 2.
\
a
+ b =
0 Þ a
Q4.
One third of the students in a class are girls and the
rest are boys. The probability
that a girl gets a first class is 0.4 and that of a boy is 0.3. If a student
having first class is selected, find the probability that the student is a
girl.
Solution:
Let A, B and C denote
the event that a student is a boy, a girl and a student having first
class. We are given the following
P(A) =
|
2
|
,
|
P(B) =
|
1
|
,
|
P(C / A) =
|
|
3
|
|
and P(C / B) =
|
|
4
|
|
|
|
|||||||||
3
|
3
|
10
|
|
10
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
So P(A Ç C ) = P(C / A) P(A) =
|
|
3
|
.
|
2
|
=
|
|
1
|
.
|
Similarly P(C Ç B) =
|
4
|
|
|||||||||||||
10
|
3
|
|
5
|
30
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
P(C) =
P(C Ç (A È
B)) since A È B = 5
|
|
|||||||||||||||||||||||
= P((C Ç A) È (C Ç B)) by Demorgan’s law
=
P(C
Q5. Evaluate òx
2
sin-1 x dx
Solution
a) I = ò x2 sin-1 x dx
Let u =
sin-1 x
|
dv = x2dx
|
|
|
v
=
|
x3
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
Q6. The mean and standard deviation of 63 children on an average test
are respectively 27.6 and 7.1. To them are added a new group of 26 who have
less training and whose mean is 19.2 and standard deviation is 6.2. How will
the value of combined group differ from those of the original 63 children as to
mean and standard deviation?
Solution:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Given number of
children
|
|
Mean
Mark
|
S.D. of marks
|
|
|||||||||||
N1
|
=
63
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 =
27.6
|
s1
|
= 7.1
|
|
|||||||
N2
|
=
26
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X2
=19.2
|
s2
|
= 6.2
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
=
|
N1
|
X1 + N2 X2
|
|
|
|
|
|||||
\ Combined mean
X12
|
|
|
|
Get fully solved assignment, plz drop a mail with your sub code
computeroperator4@gmail.com
Charges for mba rs 125/subject and rs 700/semester only.
For other rs 125/subject only
if urgent then call us
on 08791490301, 08273413412
No comments:
Post a Comment