Thursday, 25 May 2017

bit202 smu bsc it spring 2017 (jul/aug 2017 exam) IInd sem assignment

Get fully solved assignment. Buy online from website
online store
or
plz drop a mail with your sub code
we will revert you within 2-3 hour or immediate
Charges rs 125/subject


DRIVE SPRING 2017
PROGRAM Bachelor of Science in Information Technology - B.SC(IT)
SEMESTER II
SUBJECT CODE & NAME BIT202 – Basic Mathematics

Assignment Set -1
1 a) If in group G, (ab)^2 = a^2b^2 for every a, b Î G prove that G is abelian.
b) Show that if every element of a group G is its own inverse then G is abelian.

Answer: a) (ab)^2 = a^2.b^2

Ø  (ab) (ab) = (a . a) (b . b)

Ø  a[b(ab)] = a[a(bb)] (Associative)

Ø  b (ab) =

Ø   



2 If tan A = 1- cos B . show that tan 2A = tan B.
                          sinB

Answer: Given that tan A = 1-cosB
                                                                SinB

i.e tan A = 1-{1-2sin^2 (B/2)}
                     2sin(B/2) cos(B/2)




3 Evaluate dy/dx,  when y = log[√(1+x^2)+x]) / [√(1+x^2)-x])

Answer: d/dx{(log[√(1+x^2)+x]) - log[√(1+x^2)-x])

(Since log A/B = Log A – log B)



Assignment Set -2

1 Integrate the following w.r.t. x
i) x √(x + a)
ii) x /√(a + bx)

Answer: a) x √(x + a)

∫x√(x+a) dx = I                                 (say)



2 If a = cos q + i sin q, 0<q <2p prove that {1+a}/{1-a} = i cot q/2

Answer: i. If a = cos q + i sin q,0 <q < 2p prove that 1+a/1-a = i cot q/2

L.H.S = 1+ cos q + i sin q
                1 - cos q - i sin q



3 Solve: 3/1 + (3.5/1.2) . (1/3) + (3.5.7/1.2.3) . (1/3^2) + …………..∞]

Answer: Comparing the given series with one of the general Binomial series, we get

P=3, q=2, x/q=1/3

x=2/3



Get fully solved assignment. Buy online from website
online store
or
plz drop a mail with your sub code
we will revert you within 2-3 hour or immediate
Charges rs 125/subject


No comments:

Post a Comment