online store
or
plz drop a mail with your sub code
we will revert you within 2-3 hour or immediate
Charges rs
125/subject
if urgent then
call us on 08791490301, 08273413412
DRIVE FALL 2016
PROGRAM BACHELOR OF
COMPUTER APPLICATION
SEMESTER 1
SUBJECT CODE &
NAME
BCA113 - BASIC
MATHEMATICS
Q1.
i. being integers, n > 0 find dx/dy
Q2. Differentiate
log (2x + 3) from first principles
Solution.
Let y = log (2x + 3)
Let
D x be a small increment in x and
D y
the corresponding increment in y.
Then y +Dy
= log(2(x +Dx)+ 3)
Dy
Q3. Evaluate
|
|
ò
|
|
2 cos x + 3sin x
|
dx = I
|
|
|
|
4 cos x + 5sin x
|
|
Answer:
|
|
ò
|
|
2 cos x + 3sin x
|
dx = I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
4 cos x + 5sin x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
d
|
|
(4 cos x + 5 sin x) = -4 sin x + 5 cos x
|
|
|
|
|||||||||||||||||||||||||||||||||
|
|
dx
|
|
|
|
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
Q4 Solve
Solution:
The given equation is:
Get fully solved assignment. Buy online from website
online store
or
plz drop a mail with your sub code
we will revert you within 2-3 hour or immediate
Charges rs
125/subject
if urgent then
call us on 08791490301, 08273413412
No comments:
Post a Comment